Submit Manuscript  

Article Details


Xanthoangelol Isolated from Angelica keiskei Roots Prevents Dextran Sulfate Sodium-Treated Colitis in Mice

[ Vol. 10 , Issue. 5 ]

Author(s):

Yoshiyuki Kimura* and Kimye Baba   Pages 655 - 663 ( 9 )

Abstract:


Background: The therapeutic effects of a number of natural products on Inflammatory Bowel Disease (IBD) have recently been examined in detail. The whole herb and roots of Angelica keiskei (Umblliferae) have traditionally been used as a diuretic, to treat gastrointestinal diseases such as gastric ulcers and diarrhea in Japan.

Objectives: The present study was performed to investigate the effects of xanthoangelol, a major chalcone of Angelica keiskei roots, on diarrhea and inflammation in the large intestine of IBD model mice.

Methods: Xanthoangelol (10 & 25 mg/kg) was orally administered to mice with 3% Dextran Sulfate Sodium (DSS)-induced colitis. Blood samples were collected during the experimental period, subjected to a full blood count test, and colonic cytokine and chemokine levels were measured.

Results: Xanthoangelol (25 mg/kg) reduced the Disease Activity Index (DAI) of colitis. It also attenuated DSS-induced reductions in red blood cell and platelet counts as well as Hb and Ht levels. A histological examination of the colon using direct fast scarlet staining showed that xanthoangelol prevented DSS-induced mucosal ulceration and eosinophil infiltration. Xanthoangelol also reduced DSS-induced increases in colonic MCP-1, IL-1β, and TNF-α levels.

Conclusion: Xanthoangelol reduced DSS-induced increases in colonic IL-1β, TNF-α, and MCP-1 levels and prevented eosinophil infiltration, which supports its potential as a treatment for IBD.

Keywords:

Xanthoangelol, dextran sulfate sodium, inflammatory bowel disease, interleukin 1β, tumor necrosis factor-α, monocyte chemoattractant protein 1, eosinophil infiltration.

Affiliation:

Department of Functional Biomedicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon City Ehime 791-0295, Department of Pharmacognosy, Osaka University of Pharmaceutical Sciences, Takatsuki City, Osaka 569-1094

Graphical Abstract:



Read Full-Text article